Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites.

نویسندگان

  • Fátima M S Moreira
  • Anderson Lange
  • Osmar Klauberg-Filho
  • José O Siqueira
  • Rafaela S A Nóbrega
  • Adriana S Lima
چکیده

This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles) and genotypically (16S rDNA sequencing), as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22), some (1R, S34 and S22) were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L(-1) NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Arbuscular Mycorrhizal (AM) Fungi in Phytoremediation of Soils Contaminated: A Review

Pollution of the soil environment with toxic materials from fossil burning, mining and smelting of metalliferous ores, disposal of sewage, fertilizers and pesticides, etc. has increased dramatically since the onset of industrial revolution. Application of plants with ability of absorbing heavy metals is a low-cost alternative for eliminating soils from heavy metals. Phytoremediation uses plants...

متن کامل

Role of Arbuscular Mycorrhizal (AM) Fungi in Phytoremediation of Soils Contaminated: A Review

Pollution of the soil environment with toxic materials from fossil burning, mining and smelting of metalliferous ores, disposal of sewage, fertilizers and pesticides, etc. has increased dramatically since the onset of industrial revolution. Application of plants with ability of absorbing heavy metals is a low-cost alternative for eliminating soils from heavy metals. Phytoremediation uses plants...

متن کامل

Bioaccumulation of Nickel and Lead by Bermuda Grass (Cynodon dactylon) and Tall Fescue (Festuca arundinacea) from Two Contaminated Soils

Soil and sediments of the estuaries and wetlands in Northwest of Persian Gulf are recently polluted with different heavy metals because of municipal and industrial wastewaters. Therefore an urgent soil cleaning up and remediation program is vital in this region. Consequently, this study was initiated to screen two plant species (Festuca arundinacea and Cynodon dactylon) for hyperaccumulation of...

متن کامل

Enumeration and Characterization of Arsenic-Tolerant Diazotrophic Bacteria in a Long-Term Heavy-Metal-Contaminated Soil

The abundance of arsenic-tolerant diazotrophic bacteria was compared in a long-term contaminated soil versus a non-contaminated one. In addition, the characterization of tolerant diazotrophic bacteria was carried out. Differences in the number of heterotrophic N2 fixers were found between soils. Contaminated soil showed a decrease in the microbial population size of about 80%, confirming the gr...

متن کامل

Pot Experiments to Study the Uptake of Zinc by Weed Species, Flowering Plants and Grass Species in Artificially Contaminated Soils: Phytoremediation- Green Technology

A novel, cost-effective and eco-friendly technologies are needed to remove Zinc from the contaminated soil environment. The present research study was designed to assess the naturally enhanced phytoextration and phytostabilization potential of different plant species from the Zinc (II) contaminated soil. Uptake of Zinc by plant species in a metal contaminated soil was studied in pot culture exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anais da Academia Brasileira de Ciencias

دوره 80 4  شماره 

صفحات  -

تاریخ انتشار 2008